Genome-wide identification of transcription factors and transcription-factor binding sites in oleaginous microalgae Nannochloropsis
نویسندگان
چکیده
Nannochloropsis spp. are a group of oleaginous microalgae that harbor an expanded array of lipid-synthesis related genes, yet how they are transcriptionally regulated remains unknown. Here a phylogenomic approach was employed to identify and functionally annotate the transcriptional factors (TFs) and TF binding-sites (TFBSs) in N. oceanica IMET1. Among 36 microalgae and higher plants genomes, a two-fold reduction in the number of TF families plus a seven-fold decrease of average family-size in Nannochloropsis, Rhodophyta and Chlorophyta were observed. The degree of similarity in TF-family profiles is indicative of the phylogenetic relationship among the species, suggesting co-evolution of TF-family profiles and species. Furthermore, comparative analysis of six Nannochloropsis genomes revealed 68 "most-conserved" TFBS motifs, with 11 of which predicted to be related to lipid accumulation or photosynthesis. Mapping the IMET1 TFs and TFBS motifs to the reference plant TF-"TFBS motif" relationships in TRANSFAC enabled the prediction of 78 TF-"TFBS motif" interaction pairs, which consisted of 34 TFs (with 11 TFs potentially involved in the TAG biosynthesis pathway), 30 TFBS motifs and 2,368 regulatory connections between TFs and target genes. Our results form the basis of further experiments to validate and engineer the regulatory network of Nannochloropsis spp. for enhanced biofuel production.
منابع مشابه
Mapping of Transcription Factor Binding Region of Kappa Casein (CSN3) Gene in Iranian Bacterianus and Dromedaries Camels
κ-casein is a glycosilated protein in mammalian milk that plays an essential role in the milk micelles. Control of κ-casein expression reflects this essential role, although an understanding of the mechanisms involved lags behind that of the other milk protein genes. Transcriptional regulation, a first mechanism for controlling the development of organisms, is carried out by transcription facto...
متن کاملMapping of Transcription Factor Binding Region of Kappa Casein (CSN3) Gene in Iranian Bacterianus and Dromedaries Camels
κ-casein is a glycosilated protein in mammalian milk that plays an essential role in the milk micelles. Control of κ-casein expression reflects this essential role, although an understanding of the mechanisms involved lags behind that of the other milk protein genes. Transcriptional regulation, a first mechanism for controlling the development of organisms, is carried out by transcription facto...
متن کاملNannochloropsis Genomes Reveal Evolution of Microalgal Oleaginous Traits
Oleaginous microalgae are promising feedstock for biofuels, yet the genetic diversity, origin and evolution of oleaginous traits remain largely unknown. Here we present a detailed phylogenomic analysis of five oleaginous Nannochloropsis species (a total of six strains) and one time-series transcriptome dataset for triacylglycerol (TAG) synthesis on one representative strain. Despite small genom...
متن کاملIn Silico Genome-Wide Screening for TnrA-Regulated Genes of Bacillus clausii
Bacillus clausii TnrA transcription factor is required for global nitrogen regulation. In order to obtain anoverview of gene regulation by TnrA in B. clausii KSMK16, the entire genome of B. clausii was screened forthe consensus sequence, 5’-TGTNAN7TNACA-3’ known as the TnrA box, and 13 transcription units werefound containing a putative TnrA box. The TnrA targets identified in...
متن کاملBioinformatics Genome-Wide Characterization of the WRKY Gene Family in Sorghum bicolor
The WRKY gene family encodes a large group of transcription factors that regulate genes involved in plant response to biotic and abiotic stresses. Sorghum is a notable grain and forage crop in semi-arid regions because of its unusual tolerance against hot and dry environments. We identified a set of 85 WRKY genes in the S. bicolor genome and classified them into three groups (I–III). Among the ...
متن کامل